$$
\begin{aligned}
& \text { EE } 330 \\
& \text { Lecture } 32
\end{aligned}
$$

Basic Amplifiers

- Analysis, Operation, and Design Cascaded Amplifiers

Spring 2024 Exam Schedule

Exam 1 Friday Feb 16
Exam 2 Friday March 8
Exam 3 Friday April 19
Final Exam Tuesday May 7 7:30 AM - 9:30 AM

Review Previous Lecture

Basic Amplifier Structures

Common Source or Common Emitter

Common Gate or Common Base

Common Drain or Common Collector

BJT			
Common	Input	Output	
E	B	C	
B	E	C	
C	B	E	

Objectives in Study of Basic Amplifier Structures

1. Obtain key properties of each basic amplifier
2. Develop method of designing amplifiers with specific characteristics using basic amplifier structures

The three basic amplifier types for both MOS and bipolar processes

Will focus on the performance of the bipolar structures and then obtain performance of the MOS structures by observation

Two-Port Models of Basic Amplifiers widely used for Analysis and Design of Amplifier Circuits

Methods of Obtaining Amplifier Two-Port Network

1. $v_{\text {TEST }}: i_{\text {TEST }}$ Method (considered in last lecture)
2. Write $v_{1}: v_{2}$ equations in standard form

$$
\begin{aligned}
& v_{1}=i_{1} R_{\mathrm{N}}+\mathrm{A}_{\mathrm{VR}} v_{2} \\
& v_{2}=i_{2} R_{0}+\mathrm{A}_{\mathrm{V} 0} v_{1}
\end{aligned}
$$

3. Thevenin-Norton Transformations
4. Ad Hoc Approaches

Any of these methods can be used to obtain the two-port model

Common Source/ Common Emitter Configurations

$$
A_{V 0}=-\frac{g_{m}}{g_{0}} \quad R_{0}=\frac{1}{g_{0}}
$$

In terms of operating point and model parameters:

$$
\begin{array}{cc:c}
R_{\text {in }}=\frac{\beta V_{t}}{I_{C Q}} \quad A_{V 0}=-\frac{V_{A F}}{V_{t}} \quad R_{0}=\frac{V_{A F}}{I_{C Q}} & R_{\text {in }}=\infty \quad R_{0}=\frac{1}{\lambda l_{\mathrm{DQ}}}=\frac{V_{A F}}{I_{\mathrm{DQ}}} \\
\text { Characteristics: } & A_{V 0}=-\frac{2}{\lambda V_{\mathrm{EBQ}}}=-2 \frac{V_{A F}}{V_{\mathrm{EBQ}}}
\end{array}
$$

- Input impedance is mid-range (infinite for MOS)
- Voltage Gain is Large and Inverting
- Output impedance is large
- Unilateral
- Widely used to build voltage amplifiers

Common Source/Common Emitter Configuration

Widely used CE application (but also a two-port)

Review From Previous Lecture

Two-port model for Common Collector Configuration

$A_{V R}=1$

$$
R_{\text {in }}=\infty
$$

$$
A_{\mathrm{V} 0}=1
$$

$$
\mathrm{R}_{0}=\frac{1}{\mathrm{~g}_{\mathrm{m}}}
$$

In terms of operating point and model parameters:

$$
R_{\text {in }}=\frac{\beta V_{t}}{I_{C Q}} \quad A_{V 0=1} \quad R_{0}=\frac{V_{t}}{I_{C Q}} \quad R_{\text {in }}=\infty \quad A_{V 0}=1 \quad R_{0}=\frac{V_{E B}}{2 l_{D Q}}
$$

- Input impedance is mid-range (infinite for MOS)
- Voltage Gain is nearly 1
- Output impedance is very low
- Slightly non-unilateral (critical though in increasing input impedance when R_{E} added)
- Widely used as a buffer

Review From Previous,_ecture
 Common Collector/Common Drain Configurations

For these popular CC/CD applications (not two-port models for these applications)

$$
\begin{aligned}
& \text { < }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{V}}=\frac{g_{m}}{g_{m}+g_{S}+g_{0}} \stackrel{\text { if } g_{m} \gg g_{s}}{\cong} 1 \\
& \mathrm{R}_{\text {in }}=\infty \\
& \mathrm{R}_{0} \cong \frac{\mathrm{R}_{\mathrm{S}}}{1+\mathrm{g}_{\mathrm{m}} \mathrm{R}_{\mathrm{S}}} \stackrel{g_{m} R_{s} \gg 1}{\cong} \frac{1}{g_{m}}
\end{aligned}
$$

In terms of operating point and model parameters:

$$
\begin{aligned}
& A_{V} \cong \frac{I_{C Q} R_{E}}{I_{C Q} R_{E}+V_{t}} \stackrel{I_{C O} R_{E} \gg V_{t}}{\cong} 1 \quad R_{0} \stackrel{I_{c o s} R_{E} \gg V_{i}}{\cong} \frac{V_{t}}{I_{C Q}}
\end{aligned}
$$

$$
\begin{aligned}
& R_{\text {in }} \stackrel{I_{c a} R_{E} \gg V_{i}}{\cong} r_{\pi}+\beta R_{E} \\
& \mathrm{R}_{\text {in }}=\infty
\end{aligned}
$$

- $\quad \mathrm{A}_{\mathrm{vo}}$ is positive and near 1
- Input impedance is very large
- Not completely unilateral but output-input transconductance is small

Consider Common Base/Common Gate Two-port Models

Common Emitter

- Will focus on Bipolar Circuit since MOS counterpart is a special case obtained by setting $g_{\pi}=0$
- Will consider both two-port model and a widely used application

Two-port model for Common Base Configuration

?

$\left\{R_{i x}, A_{V_{0}}, A_{V 0 r}\right.$ and $\left.R_{0 x}\right\}$

Two-Port Models of Basic Amplifiers widely used for Analysis and Design of Amplifier Circuits

Methods of Obtaining Amplifier Two-Port Network

1. $\boldsymbol{v}_{\text {TEST }}: \boldsymbol{i}_{\text {TEST }}$ Method
2. Write $\boldsymbol{v}_{1}: \boldsymbol{v}_{2}$ equations in standard form

$$
\begin{aligned}
& v_{1}=i_{1} R_{\mathrm{IN}}+\mathrm{A}_{\mathrm{VR}} v_{2} \\
& \boldsymbol{v}_{2}=\boldsymbol{i}_{2} \mathrm{R}_{\mathrm{O}}+\mathrm{A}_{\mathrm{V} 0} v_{1}
\end{aligned}
$$

3. Thevenin-Norton Transformations
4. Ad Hoc Approaches

Two-port model for Common Base Configuration

From KCL

$$
\left.\begin{array}{c}
\boldsymbol{i}_{1}=\boldsymbol{v}_{1} g_{\pi}+\left(\boldsymbol{v}_{1}-\boldsymbol{v}_{2}\right) g_{0}+g_{m} \boldsymbol{v}_{1} \\
\boldsymbol{i}_{2}=\left(\boldsymbol{v}_{2}-\boldsymbol{v}_{1}\right) g_{0}-g_{m} \boldsymbol{v}_{1}
\end{array}\right\}
$$

These can be rewritten as

$$
\boldsymbol{v}_{1}=\left(\frac{1}{g_{m}+g_{\pi}+g_{0}}\right) \boldsymbol{i}_{1}+\left(\frac{g_{0}}{g_{m}+g_{\pi}+g_{0}}\right) \boldsymbol{v}_{2}
$$

Standard Form for Amplifier Two-Port

$$
\boldsymbol{v}_{2}=\left(\frac{1}{g_{0}}\right) \boldsymbol{i}_{2}+\left(1+\frac{g_{m}}{g_{0}}\right) \boldsymbol{v}_{1}
$$

$v_{1}: \boldsymbol{v}_{2}$ equations in standard form

It thus follows that:

$$
\mathrm{R}_{\mathrm{iX}}=\frac{1}{g_{m}+g_{\pi}+g_{0}} \cong \frac{1}{g_{m}} \quad \mathrm{~A}_{\mathrm{VOr}}=\frac{g_{0}}{g_{m}+g_{\pi}+g_{0}} \quad \mathrm{~A}_{\mathrm{V} 0}=1+\frac{g_{m}}{g_{0}} \cong \frac{g_{m}}{g_{0}} \quad \mathrm{R}_{\mathrm{oX}}=\frac{1}{g_{0}}
$$

Two-port model for Common Base Configuration

$$
\begin{array}{rr}
\mathrm{R}_{\mathrm{ix}}=\frac{1}{g_{m}+g_{\pi}+g_{0}} \cong \frac{1}{g_{m}} & \mathrm{~A}_{\mathrm{V} 0}=1+\frac{g_{m}}{g_{0}} \cong \frac{g_{m}}{g_{0}} \\
\mathrm{~A}_{\mathrm{VOr}}=\frac{g_{0}}{g_{m}+g_{\pi}+g_{0}} \cong \frac{g_{0}}{g_{m}} & \mathrm{R}_{\mathrm{oX}}=\frac{1}{g_{0}}
\end{array}
$$

Two-port model for Common Base Configuration

In terms of operating point and model parameters:

$$
R_{\text {in }}=\frac{V_{t}}{I_{C Q}} \quad A_{V 0}=\frac{V_{A F}}{V_{t}} \quad R_{0}=\frac{V_{A F}}{I_{C Q}} \quad R_{\text {in }}=\frac{V_{E B}}{2 l_{D Q}} \quad A_{V 0}=\frac{2}{\lambda V_{E B Q}} R_{0}=\frac{1}{\lambda l_{\mathrm{DQ}}}
$$

Characteristics:

- Input impedance is low
- Voltage Gain is Large and noninverting
- Output impedance is large
- Slightly nonunilateral
- Widely used to build voltage amplifiers

Common Base Configuration

Consider the following popular CB application

(this is not asking for a two-port model for this CB application - $-R_{\text {in }}$ and A_{V} defined for no load on output, R_{o} defined for short-circuit input)

$\mathrm{I}_{\mathrm{V}}=\mathrm{A}_{\mathrm{V} 0} \frac{\mathrm{R}_{\mathrm{C}}}{\mathrm{R}_{\mathrm{C}}+\mathrm{R}_{0 \mathrm{x}}}=\left(\frac{g_{m}+g_{0}}{g_{0}}\right)\left(\frac{g_{0}}{g_{C}+g_{0}}\right)=\frac{g_{m}+g_{0}}{g_{C}+g_{0}} \cong g_{m} R_{C}$
I $\mathrm{R}_{\text {in }}=\frac{\boldsymbol{v}_{\text {in }}}{\boldsymbol{i}_{1}}=\frac{\boldsymbol{i}_{1} \mathrm{R}_{\mathrm{iX}}+\mathrm{A}_{\mathrm{Vor}} \boldsymbol{v}_{\text {out }}}{\boldsymbol{i}_{1}} \longrightarrow \mathrm{R}_{\text {in }}=\frac{\mathrm{R}_{\mathrm{ix}}}{1-\mathrm{A}_{\mathrm{vor}} \mathrm{A}_{\mathrm{V}}}=\frac{g_{0}+g_{C}}{g_{C}\left(g_{m}+g_{\pi}+g_{0}\right)+g_{\pi} g_{0}} \cong \frac{1}{g_{m}}$

$\mathrm{R}_{\text {out }}=\mathrm{R}_{\mathrm{C}} / / \mathrm{R}_{\mathrm{oX}} \longrightarrow \mathrm{R}_{\text {out }}=\frac{\mathrm{R}_{\mathrm{C}}}{1+\mathrm{g}_{0} \mathrm{R}_{\mathrm{C}}}$

Common Base Configuration

Consider the following popular CB application
(this is not asking for a two-port model for this CB application $-R_{\text {in }}$ and A_{V} defined for no load on output, R_{o} defined for short-circuit input)

Alternately, this circuit can also be analyzed directly with BJT model

$$
g_{c}=\frac{1}{R_{c}}
$$

By KCL at the output node, obtain

$$
\begin{aligned}
& \quad\left(\mathrm{g}_{\mathrm{C}}+\mathrm{g}_{0}\right) \boldsymbol{v}_{0}=\left(\mathrm{g}_{\mathrm{m}}+\mathrm{g}_{0}\right) \boldsymbol{v}_{\text {in }} \longrightarrow \mathrm{A}_{V}=\frac{g_{m}+g_{0}}{g_{C}+g_{0}} \cong g_{m} R_{C} \\
& \text { By KCL at the emitter node, obtain }
\end{aligned}
$$

$$
\begin{aligned}
& i_{1}=\left(g_{\mathrm{m}}+g_{\pi}+g_{0}\right) v_{\text {in }}-g_{0} v_{\text {out }} \longrightarrow \mathrm{R}_{\text {in }}=\frac{}{g_{\mathrm{C}}(g} \\
& \mathrm{R}_{\text {out }}=\mathrm{R}_{\mathrm{C}} / / \mathrm{r}_{0} \longrightarrow \mathrm{R}_{\text {out }}=\frac{\mathrm{R}_{\mathrm{C}}}{1+\mathrm{g}_{0} R_{\mathrm{C}}} \cong \mathrm{R}_{\mathrm{C}}
\end{aligned}
$$

Popular Common Base Application

(this is not a two-port model for this CB application)

$$
\begin{aligned}
\mathrm{A}_{\mathrm{V}} \cong g_{m} R_{C} & \mathrm{~A}_{\mathrm{V}} \cong \frac{\mathrm{I}_{\mathrm{CQ}} \mathrm{R}_{\mathrm{C}}}{\mathrm{~V}_{\mathrm{t}}} \\
\mathrm{R}_{\text {in }} \cong \frac{1}{\mathrm{~g}_{\mathrm{m}}} & \mathrm{R}_{\text {in }} \cong \frac{\mathrm{V}_{\mathrm{t}}}{\mathrm{I}_{\mathrm{CQ}}} \\
\mathrm{R}_{\mathrm{out}} \stackrel{\mathrm{R}_{\mathrm{c}} \ll \mathrm{r}_{\mathrm{o}}}{\cong} \mathrm{R}_{\mathrm{C}} & \mathrm{R}_{\mathrm{out}} \stackrel{\mathrm{R}_{\mathrm{c}} \ll \mathrm{r}_{\mathrm{o}}}{\cong} \mathrm{R}_{\mathrm{C}}
\end{aligned}
$$

Characteristics:

- Output impedance is mid-range
- $A_{\text {vo }}$ is large and positive (equal in mag to that to CE)
- Input impedance is very low
- Not completely unilateral but output-input transconductance is small

Common Base/Common Gate Application

(these are not a two-port models)

$\mathrm{A}_{\mathrm{V}} \cong g_{m} R_{C}$

$$
\mathrm{R}_{\text {in }} \cong \frac{1}{\mathrm{~g}_{\mathrm{m}}} \quad \mathrm{R}_{\text {out }} \stackrel{\mathrm{R}_{\mathrm{c}} \ll \mathrm{r}_{\mathrm{o}}}{\cong} \mathrm{R}_{\mathrm{C}}
$$

In terms of operating point and model parameters:

$$
\begin{gathered}
A_{V} \cong \frac{I_{C Q} R_{C}}{V_{t}} \quad R_{\text {in }} \cong \frac{V_{t}}{I_{C Q}} \quad R_{\text {out }} \stackrel{I_{c o} R_{c} \ll V_{\text {AF }}}{\cong} R_{C} A_{V} \cong \frac{2 I_{D Q} R_{D}}{V_{E B Q}} \quad R_{\text {in }} \cong \frac{V_{E B Q}}{2 I_{D Q}} \quad R_{\text {out }} \xlongequal{I_{\text {oo }} R_{0} \ll 1 / \lambda} \xlongequal{\cong} R_{D} \\
\text { Characteristics: }
\end{gathered}
$$

- Output impedance is mid-range
- $\quad A_{v o}$ is large and positive (equal in mag to that to CE)
- Input impedance is very low
- Not completely unilateral but output-input transconductance is small

The three basic amplifier types for both MOS and bipolar processes

- Have developed both two-ports and a widely used application of all 6
- A fourth structure (two additional applications) is also quite common so will be added to list of basic applications

Common Emitter with Emitter Resistor Configuration_Application
(this is not a two-port model for this $C E$ with R_{E} application)

$\boldsymbol{v}_{\text {out }}\left(g_{C}+g_{0}\right)+\left(\boldsymbol{v}_{\text {in }}-\boldsymbol{v}_{\mathrm{E}}\right) g_{m}=g_{0} \boldsymbol{v}_{\mathrm{E}}$
$\left.\boldsymbol{v}_{\mathrm{E}}\left(g_{\mathrm{E}}+g_{0}+g_{\pi}\right)-\left(\boldsymbol{v}_{\mathrm{in}}-\boldsymbol{v}_{\mathrm{E}}\right) g_{m}=g_{0} \boldsymbol{v}_{\mathrm{out}}+g_{\pi} \boldsymbol{v}_{\mathrm{in}}\right\}$

$$
A_{V}=\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{-g_{m} g_{E}+g_{0} g_{\pi}}{g_{C} g_{m}+g_{C}\left(g_{0}+g_{\pi}+g_{E}\right)+g_{0}\left(g_{\pi}+g_{E}\right)} \cong-\frac{R_{C}}{R_{E}}
$$

Common Emitter with Emitter Resistor Configuration_Application

(this is not a two-port model for this $C E$ with R_{E} application)

It can also be shown that

$$
\begin{gathered}
R_{\text {in }} \cong r_{\pi}+\beta R_{E} \cong \beta R_{E} \\
R_{\text {out }} \cong R_{C}
\end{gathered}
$$

Nearly unilateral (is unilateral if $\mathrm{g}_{\circ}=0$)

Common Emitter with Emitter Resistor Configuration_Application
(this is not a two-port model for this $C E$ with R_{E} application)

$$
\begin{aligned}
& A_{V} \cong-\frac{R_{C}}{R_{E}} \\
& R_{\text {in }} \cong \beta R_{E} \\
& R_{\text {out }} \cong R_{C}
\end{aligned}
$$

(this is not a two-port model)
Characteristics:

- Analysis would simplify if g_{0} were set to 0 in model
- Gain can be accurately controlled with resistor ratios
- Useful for reasonably accurate low gains
- Input impedance is high

Basic Two-Port Amplifier Gain Table

		CC/CD	CB/CG
	BJT MOS		BJT MOS
A_{V}	$\begin{gathered} -\frac{g_{m}}{g_{o}} \\ -\frac{I_{\mathrm{CQ}} R_{C}}{V_{t}} \end{gathered}-\frac{2{I_{\mathrm{DQ}} R_{D}}_{V_{E B}}}{}$	1	\qquad $1+\frac{g_{m}}{g_{0}} \approx \frac{g_{m}}{g_{0}}$ $\frac{V_{\mathrm{AF}}}{V_{t}} \quad \frac{2}{\lambda V_{\mathrm{EB}}}$
R_{in}	$r_{T T}$ ∞ $\frac{\beta V_{t}}{I_{C Q}}$ ∞	$\begin{array}{cc} r_{\Pi} & \infty \\ \beta\left(\frac{v_{t}}{l_{C Q}}\right) & \infty \end{array}$	$\begin{array}{cr} \frac{1}{g_{m}+g_{\pi}+g_{\circ}} \simeq g_{m}^{-1} & \frac{1}{g_{m}+g_{\circ}} \simeq g_{m}^{-1} \\ \frac{V_{t}}{\mathrm{I}_{\mathrm{CQ}}} & \frac{V_{\mathrm{EB}}}{2 \mathrm{I}_{\mathrm{DQ}}} \end{array}$
$\mathrm{R}_{\text {out }}$	$\frac{1}{90}$	$\begin{array}{cc} \frac{1}{g_{m}+g_{\pi}+g_{o}} \simeq g_{m}^{-1} & \frac{1}{g_{m}+g_{o}} \simeq g_{m}^{-1} \\ \frac{V_{t}}{I_{C Q}} & \frac{V_{\mathrm{EB}}}{2 l_{\mathrm{DQ}}} \end{array}$	$\begin{array}{lll} \hline & \frac{1}{\mathrm{gO}_{0}} & \\ \frac{\mathrm{~V}_{\mathrm{AF}}}{\mathrm{I}_{\mathrm{CQ}}} & & \frac{1}{\lambda_{\mathrm{DQ}}} \end{array}$
$A_{V R}$	0 0 0	$\begin{array}{lll} & 1 \\ 1 & & \\ 1\end{array}$	$\begin{array}{cc} \frac{g_{0}}{g_{m}+g_{\pi}+g_{0}} \simeq \frac{g_{0}}{g_{m}} & \frac{g_{0}}{g_{m}+g_{o}} \simeq \frac{g_{0}}{g_{m}} \\ \frac{V_{t}}{V_{A F}} & \frac{\lambda V_{\text {EB }}}{2} \end{array}$

Basic Amplifier Application Gain Table

(not two-port models for the four structures)
Can use these equations only when small signal circuit is EXACTLY like that shown !!

Basic Amplifier Structures

1. Common Emitter/Common Source
2. Common Collector/Common Drain
3. Common Base/Common Gate
4. Common Emitter with $\mathrm{R}_{\mathrm{E}} /$ Common Source with R_{S}
5. Cascode (actually CE:CB or CS:CG cascade)
6. Darlington (special CC:CE or CD:CS cascade)

The first 4 are most popular

Why are we focusing on these basic circuits?

1. So that we can develop analytical skills
2. So that we can design a circuit
3. So that we can get the insight needed to design a circuit

Which is the most important?

Why are we focusing on these basic circuits?

1. So that we can develop analytical skills
2. So that we can design a circuit
3. So that we can get the insight needed to design a circuit

Which is the most important?

1. So that we can get the insight needed to design a circuit
2. So that we can design a circuit
3. So that we can develop analytical skills

Properties/Use of Basic Amplifiers

CE and CS

More practical biasing circuits usually used
R_{C} or R_{D} may (or may not) be load

- Large inverting gain
- Moderate input impedance for BJT (high for MOS)
- Moderate output impedance
- Most widely used amplifier structure

Properties/Use of Basic Amplifiers

CC and CD

(emitter follower or source follower)

More practical biasing circuits usually used
R_{E} or R_{S} may (or may not) be load

- Gain very close to +1 (little less)
- High input impedance for BJT (high for MOS)
- Low output impedance
- Widely used as a buffer

Properties/Use of Basic Amplifiers

CB and CG

More practical biasing circuits usually used
R_{C} or R_{D} may (or may not) be load

- Large noninverting gain
- Low input impedance
- Moderate (or high) output impedance
- Used more as current amplifier or, in conjunction with CD/CS to form two-stage cascode

Properties/Use of Basic Amplifiers

CEwRE and CSwRS

CE with R_{E}

$C S$ with R_{S}

More practical biasing circuits usually used
R_{C} or R_{D} may (or may not) be load

- Gain can be accurately controlled with resistor ratios
- Useful for reasonably accurate low gains
- Input impedance is high

Basic Amplifier Characteristics Summary

- Large inverting gain
- Moderate input impedance
- Moderate (or high) output impedance
- Widely used as the basic high gain inverting amplifier

Cascaded Amplifiers

- Amplifier cascading widely used to enhance gain
- Amplifier cascading widely used to enhance other characteristics and/or alter functionality as well
e.g. $\left(R_{I N}, B W\right.$, Power, R_{0}, Linearity, Impedance Conversion..)

Cascaded Amplifier Analysis and Operation

Adjacent Stage Coupling Only

- Systematic Methods of Analysis/Design will be Developed

One or more couplings of nonadjacent stages

- Less Common
- Analysis Generally Much More Involved, Use Basic Circuit Analysis Methods

Cascaded Amplifier Analysis and Operation

Adjacent Stage Coupling Only

- Systematic Methods of Analysis/Design will be Developed

Case 1: All stages Unilateral
Case 2: One or more stages are not unilateral

Repeat from earlier discussions on amplifiers

Cascaded Amplifier Analysis and Operation

Case 1: All stages Unilateral

$$
A_{V}=\frac{v_{\text {out }}}{v_{\text {in }}}=\left(\frac{R_{i X 1}}{R_{\mathrm{iX} 1}+\mathrm{R}_{\mathrm{S}}}\right) \mathrm{A}_{\mathrm{V} 01}\left(\frac{\mathrm{R}_{\mathrm{L} 1} / / \mathrm{R}_{\mathrm{iX} 2}}{R_{\mathrm{L} 1} / / \mathrm{R}_{\mathrm{iX} 2}+\mathrm{R}_{0 \mathrm{XX} 1}}\right) \mathrm{A}_{\mathrm{V} 02}\left(\frac{\mathrm{R}_{\mathrm{L}}}{R_{\mathrm{L}}+\mathrm{R}_{0 \mathrm{X} 2}}\right)
$$

Accounts for all loading between stages !

Cascaded Amplifier Analysis and Operation

Case 2: One or more stages are not unilateral
> Standard two-port cascade

Analysis by creating new two-port of entire amplifier quite tedious because of the reverse-gain elements
Right-to-left nested $\mathrm{R}_{\text {inx }}, \mathrm{A}_{\mathrm{VKX}}$ approach

- $\mathrm{R}_{\text {inx }}$ includes effects of all loading
- $A_{V K X}$ is the voltage ratio from input to output of a stage
- $A_{V K X}$'s include all loading
- Can not change any loading without recalculating everthing!

Example 1:

Determine the voltage gain of the following circuit in terms of the smallsignal parameters of the transistors. Assume Q_{1} and Q_{2} are operating in the Forward Active region and $C_{1} \ldots C_{4}$ are large.

In this form, does not look "EXACTLY" like any of the basic amplifiers !

Example 1:

Will calculate A_{V} by determining the three ratios (not voltage gains of dependent source):

$$
\mathrm{A}_{\mathrm{V}}=\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{v_{\text {out }}}{v_{\mathrm{B}}} \frac{v_{\mathrm{B}}}{v_{\mathrm{A}}} \frac{v_{\mathrm{A}}}{v_{\text {in }}}=\mathrm{A}_{\mathrm{V} 2} \mathrm{~A}_{\mathrm{V} 1} \mathrm{~A}_{\mathrm{V} 0}
$$

Example 1:

Example 1:

$R_{\text {in2 }} \cong \beta R_{7}$

Example 1:

$$
\begin{aligned}
& A_{\mathrm{V} 2}=\frac{v_{\text {out }}}{v_{\mathrm{B}}} \cong-\frac{\mathrm{R}_{6} / / R_{8}}{\mathrm{R}_{7}} \\
& \mathrm{R}_{\text {in2 } 2} \cong \beta R_{7}
\end{aligned}
$$

Example 1:

Example 1:

Example 1:

$$
\mathrm{A}_{\mathrm{v} 0}=\frac{v_{\mathrm{A}}}{v_{\text {in }}} \cong \frac{\mathrm{R}_{1} / / \mathrm{R}_{2} / / \mathrm{R}_{\text {in } 1}}{\mathrm{R}_{\mathrm{S}}+\mathrm{R}_{1} / / \mathrm{R}_{2} / / \mathrm{R}_{\text {in } 1}}
$$

Example 1:

Thus we have

$$
\mathrm{A}_{\mathrm{V}}=\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{v_{\text {out }}}{v_{\mathrm{B}}} \frac{v_{\mathrm{B}}}{v_{\mathrm{A}}} \frac{v_{\mathrm{A}}}{v_{\text {in }}}
$$

where

$$
\begin{array}{ll}
\frac{v_{\text {out }}}{v_{\mathrm{B}}} \cong-\frac{\mathrm{R}_{6} / / R_{8}}{R_{7}} & \\
\frac{v_{\mathrm{B}}}{v_{\mathrm{A}}} \cong-g_{\mathrm{m} 1}\left(R_{3} / / R_{5} / / R_{\text {in } 2}\right) & R_{\text {in } 2} \cong \beta R_{7} \\
\frac{v_{\mathrm{A}}}{v_{\text {in }}} \cong \frac{R_{1} / / R_{2} / / R_{\text {in } 1}}{R_{\mathrm{S}}+R_{1} / / R_{2} / / R_{\text {in } 1}} & R_{\text {in } 1} \cong r_{\pi 1}
\end{array}
$$

Formalization of cascade circuit analysis working from load to input: (when stages are unilatera or not unilateral)

$\mathrm{R}_{\text {ink }}$ includes effects of all loading
Must recalculate if any change in loading
Analysis systematic and rather simple

$$
\frac{v_{\text {OUT }}}{v_{\mathrm{IN}}}=\frac{v_{1}}{v_{\mathrm{IN}}} \frac{v_{2}}{v_{1}} \frac{v_{3}}{v_{2}} \frac{v_{\text {OUT }}}{v_{3}}
$$

This was the approach used in analyzing the previous cascaded amplifier

Example 1:

Observation: By working from the output back to the input we were able to create a sequence of steps where the circuit at each step looked EXACTLY like one of the four basic amplifiers. Engineers often follow a design approach that uses a cascade of the basic amplifiers and that is why it is often possible to follow this approach to analysis.

Two other methods could have been used to analyze this circuit

What are they?

Example 1:

Two other methods could have been used to analyze this small-signal circuit

1. Create a two-port model of the two stages
(for this example, since the first-stage is unilateral, the two-port cascade analysis is rather easy)

Example 1:

Two other methods could have been used to analyze this circuit
2. Put in small-signal model for Q_{1} and Q_{2} and solve resultant circuit
(not too difficult for this specific example but time consuming)

Review: Small-signal equivalent of a one-port

"Diode-connected transistor"

"GS - connected transistor"

$$
\begin{aligned}
& g=g_{0} \\
& R=\frac{1}{g_{0}}
\end{aligned}
$$

Review: Small-signal equivalent of a one-port

"Diode-connected transistor"

$$
g=g_{m}+g_{\pi}+g_{0} \approx g_{m}
$$

$$
R=\frac{1}{g_{m}+g_{\pi}+g_{0}} \approx \frac{1}{g_{m}}
$$

"BE - connected transistor"

$\longrightarrow\left\{\begin{array}{l}g=g_{0} \\ R=\frac{1}{g_{0}}\end{array}\right.$

Example 2: $\quad \mathrm{A}_{\mathrm{v}}=\frac{v_{\text {out }}}{v_{\text {in }}}=$?
Express in terms of small-signal parameters

Example 2: $\mathrm{A}_{v}=\frac{v_{\text {out }}}{v_{\mathrm{n}}}=$?
Express in terms of small-signal parameters

Example 2: $\mathrm{A}_{v}=\frac{v_{\text {out }}}{v_{\mathrm{n}}}=$?

Express in terms of small-signal parameters
Gain Calculation in terms of Small-Signal Parameters

$$
\frac{\boldsymbol{v}_{\mathrm{OUT}}}{\boldsymbol{v}_{2}}=
$$

$$
\frac{v_{2}}{v_{1}}=
$$

$\frac{\boldsymbol{v}_{1}}{\boldsymbol{v}_{\text {in }}}=$

If $r_{\pi}+\beta\left(R_{B 1} / / R_{B 2}\right) \gg 1 / g_{m 2}$

$$
\mathrm{A}_{\mathrm{V}}=\frac{v_{\text {out }}}{v_{2}} \frac{v_{2}}{v_{1}} \frac{v_{1}}{v_{\text {in }}} \cong\left[-\mathrm{g}_{\mathrm{m} 4}\left(\mathrm{R}_{\mathrm{D}} / / \mathrm{R}_{\mathrm{L}}\right)\right][1]\left[\frac{-\mathrm{g}_{\mathrm{m} 1}}{\mathrm{~g}_{\mathrm{m} 2}}\right]
$$

Example 3:

Visualize small-signal circuit (Draw small-signal circuit if necessary) Gain Calculation in Small-Signal Parameters
$\frac{v_{\text {OUT }}}{v_{2}}=$

$$
\frac{v_{2}}{v_{1}}=
$$

$\frac{v_{1}}{v_{\text {in }}}=$

$$
\mathrm{A}_{\mathrm{V}}=\frac{v_{\text {out }}}{v_{2}} \frac{v_{2}}{v_{1}} \frac{v_{1}}{v_{\text {in }}} \cong\left[-\mathrm{g}_{\mathrm{m} 4}\left(\mathrm{R}_{\mathrm{D}} / / \mathrm{R}_{\mathrm{L}}\right) / \mathrm{R}_{S 1}\right][1]\left[\frac{-\mathrm{g}_{\mathrm{m} 1}}{\mathrm{~g}_{\mathrm{m} 2}}\right]
$$

Example 5:

Visualize small-signal circuit (Draw small-signal circuit if necessary)

Gain Calculation in Small-Signal Parameters

$$
A_{V}=\frac{v_{\text {out }}}{v_{\mathrm{B}}} \cong-g_{\mathrm{m} 1}(3 \mathrm{~K} / / 4 \mathrm{~K})
$$

Stay Safe and Stay Healthy !

End of Lecture 32

